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Dynamics of bacterial cell density in microcosms supplemented with gasoline evolved 
differently as compared with the control, emphasizing the role of gasoline on the 
dynamics of bacterial cell density. In supplemented microcosms, but not in the control, 
an association containing both organo- and phototrophic microorganisms developed 
that appear to be an important change in microbiota as a result of gasoline presence. 
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INTRODUCTION 

The  role of prokaryotes  in petroleum hydrocarbons consumption started to 
be an interesting field of Microbiology (e.g. ZoBell, 1946; Zarnea and Leu, 1967; 
Jones and Edington, 1968; Jones et al., 1970; Yoshida and Yamane, 1971; Atlas 
and Bartha, 1972), which has flourished in the past three decades (Atlas, 1981; 
Elsad, 1986; Leahy and Colwell, 1990; Head and Swannell, 1999; Lazar et al., 
1999; Ramos et al., 2002; van Hamme et al., 2003; Voicu et al., 2003; de Oteyza et 
al., 2004; Harayama et al., 2004; Diestra et al., 2005; Head et al., 2006; Segura et 
al., 2007; Stefanescu et al., 2008; Nikolopoulou and Kalogerakis, 2009; Tanase 
2009; Lazaroaie 2008, 2009). 

Taking into account the advantages of microcosms (Iturbe et al. 2003; 
Molina-Barahona et al., 2004) we started research on marine microbiota able to 
tolerate/oxidize gasoline (Ardelean et al. 2009 a, b, c), a complex hydrocarbon 
mixture whose consumption by heterotrophic bacteria is under increased research 
(Jamison et al., 1975; Ridgway et al., 1990; Zhou and Crawford, 1995; Cunha and 
Leite, 1997; Solano-Serena, 1999, 2000; Röling et al., 2002, 2004; Sánchez et al., 
2006; Teira et al., 2007; Genovese et al., 2008). 

The aim of this paper is to compare the dynamics of marine bacterioplankton 
cell density in microcosms supplemented with gasoline and ammonium acetate, as 
experimental model systems for natural marine environments. 
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MATERIAL AND METHODS 

Samples. Water samples were collected from the Black Sea (0.5 m depth- 
Tomis harbor) and kept in polyethylene transparent bottles (Ardelean et al., 2009 a, 
b, c). 

Microcosms construction was done as previously shown (Ardelean et al., 
2009 a, c) as follows: Black Sea natural sample-control (M3); control 
supplemented with petroleum hydrocarbons (gasoline-0.25% v/w) (M2) and iii) 
control supplemented with petroleum hydrocarbons (gasoline-0.25% v/w) and 
nutrients (ammonium acetate 0.005% w/w) (M1) which were kept at ambient 
temperature and natural illumination for two months (from March 29 till May 30). 

The disruption of planktonic cell aggregates and Cell enumeration were 
done as previously shown (Ardelean et al., 2009) adapted from literature (Sherr 
et al., 2001). 

RESULTS AND DISCUSSION 

BACTERIAL DENSITY DYNAMICS IN THE THREE TYPES OF MARINE MICROCOSMS 

The original results obtained are presented in Figure 1 where one can see that 
the microcosms shows a  in time (March the 29th till May the 30th) a dynamics of 
cell density from 2.9×103 to 15.2×103 cells/mL (M3 – control), from 3×103 to 
64×103 in M1 and from 5.3×103 to 67×103 in M2. 

 

 
Fig. 1. Time evolution of cell density counted by epifluorescence microscopy (AO staining)  

in the three types of microcosms. 

The experimental results show that the time evolution of cells densities in 
control (M3) is different from that in M2 and M1. The slow increase in control 
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could be explained by the slow increase in outdoor temperature from March till 
May, whereas the high increase cell densities in M1 and M2 could be further 
related to the presence of gasoline 0.25% v/w and ammonium acetate 0.005% in 
M1, and gasoline only in M2. The higher cell density is almost the same in both 
microcosms, the faster increase being counted in microcosms supplemented with 
both gasoline and ammonium acetate (M1), probably because of the nitrogen 
availability (and extra carbon source) in the form of ammonium acetate in M1 as 
compared with M2 where only gasoline was added. 

As one can see in Figure 1, the true intriguing aspect concerns the diminution 
of total cell densities in M1 and M2 towards the end of this experiment. One 
possible explanation for this huge and sharp decrease in cell densities in 
microcosms could be the presence of bacteriovorous microorganisms (Vazquez-
Dominguez et al., 2005). As one can see in Figure 2, there are visible eukaryotic 
microorganisms in samples from M1 and M2, but not in the control (not shown). 

    
Fig. 2. The presence of eukaryotic microorganisms in microcosms. A – AO staining;  

B, C – natural chlorophyll fluorescence; D – DAPI colored samples. 

To check this hypothesis/assumption there is the need to prepare microcosms 
by filtering the sea water through Millipore filter (0.45 µm) in order to remove 
eukaryotic microorganisms (e.g. flagellates) (Vazquez-Dominguez et al., 2005), as 
previously indicated (Ardelean et al. 2009b).  

Interestingly, in M1 and M2 but not in control (M3) within 3 months from 
the start of the experiment, a significant macroscopical layer of phototropic 
microorganisms has developed. This layer occurred mainly at the interface between 
the sediment and the water column as well as discrete macroscopic colonies on 
both sides of polyethylene transparent bottles. In Figure 3 there are presented 
images showing the natural fluorescence of chlorophyll, as an image of marine 
oxygenic gasoline tolerant/oxidant phototrophic microorganisms. 

Interestingly, as one can see in Figure 4, in microcosms supplemented with 
gasoline, at the interface between the sediment and water column, after 11 months 
from the start of experiment, there are also filamentous cyanobacteria which 
differentiate heterocysts; up to our best knowledge this is the first image of a 
hydrocarbon/gasoline tolerant cyanobacterium which actually differentiates  
heterocysts, besides light dependent nitrogen fixation has been experimentally 
measured in oil contaminated sediments (Musat et al., 2006). 
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A    
 

B    
Fig. 3. Autofluorescence of chlorophyll from oxygenic photosynthetic microorganisms:  

microcosms 1 (A) and 2 (B), grown at the interface between the sediment and water column. 

 
Fig. 4. Cyanobacteria with heterocyst presence in M2; AO staining. 

These results show that photosynthetic microorganisms in these layers 
living in microcosms 1 and microcosms 2 (but not in M3, the control) are mainly 
filamentous, the unicellular ones being also present. The rationale of these 
differences is under study, as well as the attempts to isolate the photosynthetic 
microorganisms in axenic cultures. 

These results argue that the relative abundance of oxygenic photosynthetic 
microorganisms at interfaces in M1 and M2 could be related to the possible 
involving of cyanobacteria in hydrocarbon oxidation, an increasing topic in 
petroleum microbiology (Al-Hasan et al., 1994, Raghukumar et al., 2001, Röling 
et al., 2002, Harayama et al., 2004, Head et al., 2006). These results indicate us to 
further investigate the density of oxygenic photosynthetic microorganisms, 
including cyanobacteria in the three microcosms.  
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CONCLUSIONS 

The dynamics of marine bacterioplankton cell density measured by 
epifluorescence microscopy (acridine orange staining) showed that: there is a 
significant initial increase in cell densities in microcosms supplemented with 
gasoline 0.25% v/w and ammonium acetate 0.005% (M1) and gasoline alone (M2) 
as compared with the control (M3), followed by a sharp decrease produced, as 
suggested by indirect preliminary results, by the activity of bacteriovorous 
microorganisms. 

In M1 and M2, but not in M3, oxygenic photosynthetic microorganisms, 
including cyanobacteria, developed macroscopic layers at the interface between 
sediment and water column and macroscopic colonies on the transparent walls of 
microcosms. These results suggest the enhancement of cyanobacterial growth in 
microcosms in the presence of gasoline, including the possibility for increased 
nitrogen input into the microcosm by photosynthetic nitrogen fixation. 
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