

Applicability of helveticin 34.9, a class III bacteriocin produced by Lactobacillus helveticus 34.9

Medana Zamfir, Iulia-Roxana Angelescu, Roxana-Lucia Cojoc, Silvia-Simona Grosu-Tudor Institute of Biology Bucharest, Romanian Academy, 296 Splaiul Independentei, Bucharest, Romania

Introduction

Lactobacillus helveticus 34.9 was isolated from a Romanian home-made fermented milk. This strain has been shown to inhibit the growth of other bacteria, including other lactic acid bacteria, (potential) pathogenic bacteria, and a strain of Halobacillus hunanensis isolated from the degraded wall of Humor monastery (Romania). The present study aimed to identify the nature of inhibition, to isolate the inhibitory compound, and to characterize it, in terms of production under different environmental conditions, stability, mode of action, and potential applications.

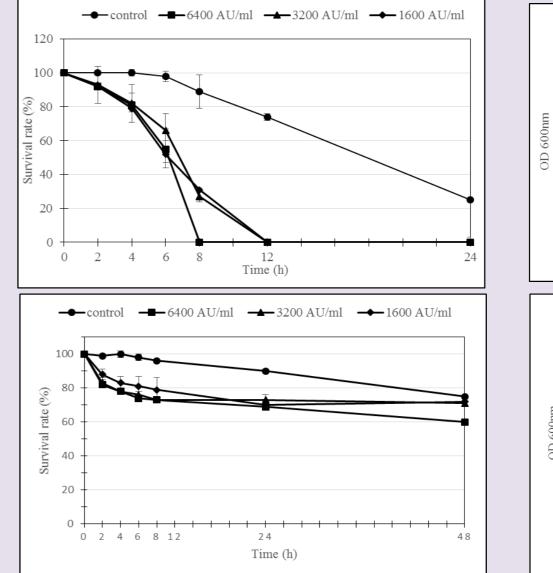
Antibacterial activity assessment

Antibacterial activity of *Lb. helveticus* 34.9 grown in different conditions against Lb. *delbrueckii* subsp. *bulgaricus* LMG6901^T

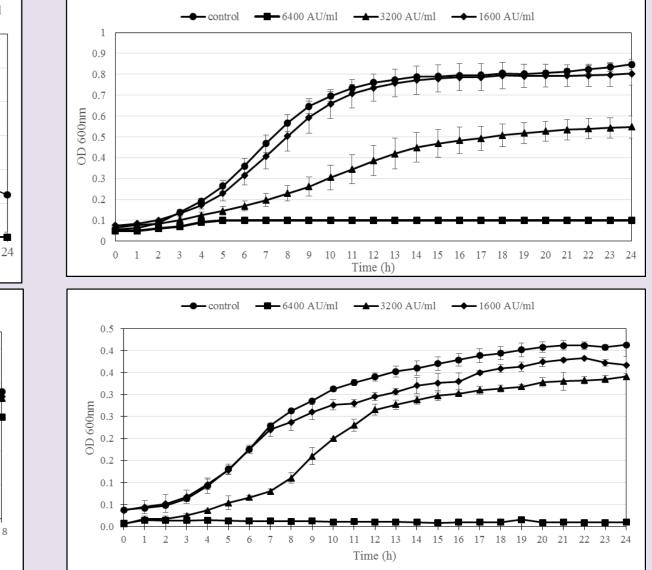
Growth conditions	37	∕∘C	42ºC	
	OD _{600nm}	Inhibitory activity (AU/ml)	OD _{600nm}	Inhibitory activity (AU/ml)
Control	3.8	200	2.3	100
Initial pH 4.5	1.5	200	0.7	<100
2% NaCl	3.4	800	2.8	100
0.1% BS	0.9	200	0.4	200
0.2% BS	0.3	800	0.2	<100
2% BS	0.2	100	0.2	<100
pH 4.5 + 2% NaCl	0.9	3,200	0.3	1,600
pH 4.5 + 0.2% BS	0.1	800	0.1	400
2% NaCl + 0.2% BS	0.4	3,200	0.2	3,200

Results

Bacteriocin isolation and characterization


Bacteriocin activity determined by agar spot method, after various treatments

Treatment	Bacteriocin activity	
	(AU/ml)	
CFCS*	3,200	
Ammonium sulphate precipitation	25,600	
(Crude bacteriocin – Control)		
pH 2.0	6,400	
pH 4.0	25,600	
pH 6.0	25,600	
pH 8.0	6,400	
pH 10.0	3,200	
60°C 15 min	400	
30 min	200	
60 min	100	
100°C 15 min	0	
30 min	0	
60 min	0	
Chloroform/methanol extraction	6,400	


Inhibitory spectrum of the bacteriocin produced by *Lb. helveticus* 34.9

Mode of action

Decrease of the survival rate of L. delbrueckii subsp. bulgaricus LMG6901^T (a) and *H*. hunanensis 5Hum (b) in the presence of helveticin 34.9

Growth of *L. delbrueckii* subsp. *bulgaricus* LMG6901[⊤] (a) and *H. hunanensis* 5Hum (b) in the presence of helveticin 34.9

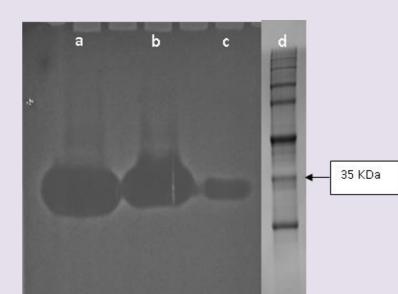
- The highest production and inhibitory activity were detected in the presence of combined stress conditions;

- The antibacterial activity is due to a high molecular mass (about 35 KDa) protein, as shown by Tricine-SDS-PAGE;

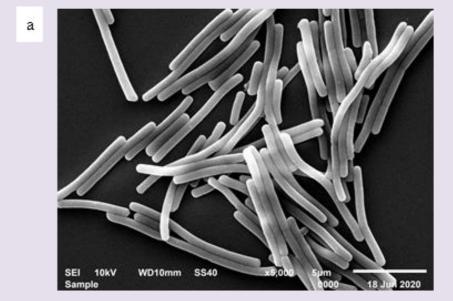
- The bacteriocin was extracted after bacterial cultivation in MRS broth (pH 4.5) supplemented with 2% NaCl;

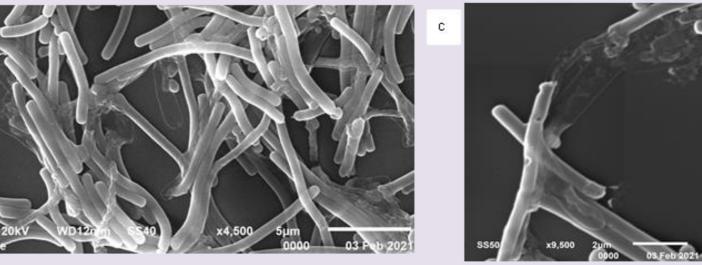
- Helveticin 34.9 is stable at pH between 2.0 and 10.0, with a slight activity decrease at pH above 8.0; it is highly sensitive to heat and proteinase K treatment;

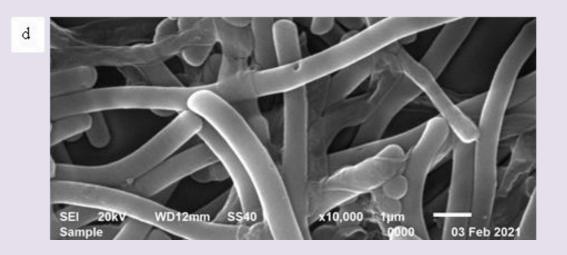
- Helveticin 34.9 inhibits the growth of strains belonging to L. delbrueckii, L. helveticus, L. sakei, E. faecium, B. subtilis, B. cereus, S. aureus, and Halobacillus hunanensis species;


- The mode of action and degree of inhibition depended on the indicator strain used. Helveticin 34.9 killed *L. delbrueckii* subsp. *bulgaricus* LMG 6901^T cells from a suspension within 8 h, but it only reduced to 60% the viability of *H. hunanensis* 5Hum cells. - When the bacteriocin was added to the growth medium prior inoculation with the indicator strain, it prevented the bacterial growth of both strains.

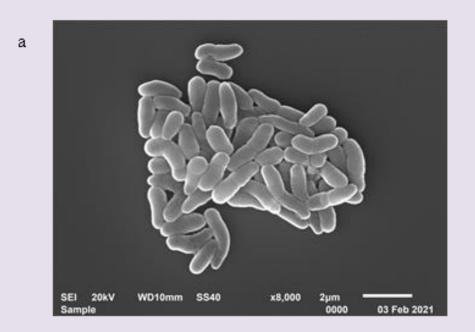
Indicator strain	Growth	Growth	Inhibition
	medium	temperature	zone* (mm)
Lactobacillus delbrueckii subsp.	MRS broth	37 °C	11.8 ± 0.1
<i>bulgaricus</i> LMG 6901 [™]			
Lactobacillus helveticus 102	MRS broth	37 °C	10.4 ± 0.2
Lactobacillus helveticus 122	MRS broth	37 °C	n.i.
Lactiplantibacillus plantarum P26	MRS broth	37 °C	n.i.
Enterococcus faecalis LMG13566	MRS broth	37 °C	n.i.
Enterococcus faecalis LMG16216	MRS broth	37 °C	n.i.
Enterococcus faecium LMG14203	MRS broth	37 °C	8.5 ± 0.1
<i>Leuconostoc mesenteroides</i> LMG13562	MRS broth	28 °C	n.i.
Latilactobacillus sakei LMG13558	MRS broth	37 °C	10.8 ± 0.2
Pediococcus pentosaceus LMG13561	MRS broth	30 °C	n.i.
Salmonela enterica ATCC 14028	BHI	37 °C	n.i.
Bacillus subtilis B17	BHI	30 °C	8 ± 0.2
Bacillus cereus CBAB	BHI	30 °C	7 ± 0.2
Escherichia coli ATCC 25922	BHI	37 °C	n.i.
Staphylococcus aureus ATCC 25923	BHI	37 °C	8.4 ± 0.2
Listeria monocytogenes ATCC 1911	BHI	37 °C	n.i.
Halobacillus hunanensis 5Hum	MH (10% NaCl)	30 °C	12.6 ± 0.3


Antagonistic effect of helveticin 34.9 against *H. hunanensis* 5Hum



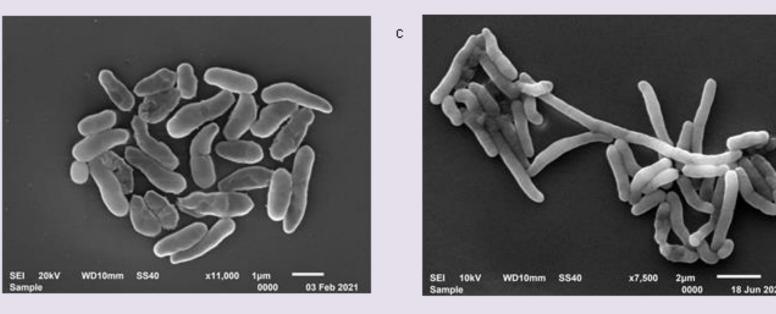

Molecular mass estimation by Tricine-SDS-PAGE

Scanning electron microscopy of *L. delbrueckii* subsp. *bulgaricus* LMG6901^T: control cells (a); morphological changes of the sensitive cells induced by bacteriocin treatment (b-d)



Scanning electron microscopy of Halobacillus hunanensis 5Hum: control cells (a); morphological changes of the sensitive cells induced by bacteriocin treatment (b-c)

Helveticin 34.9 induced morphological changes in the sensitive strains, more severe in the case of *L. delbrueckii* subsp. *bulgaricus*, as observed by scanning electron microscopy.



1 – cell free supernatant; 2 – ammonium sulphate precipitate; 3 – chloroform/methanol extract 4 – MW markers

Conclusion

The present study opens new perspectives for the applicability of LAB bacteriocins, including in the non-food area. Results are of great importance given that class III bacteriocins is much less studied compared with the other classes, due to the narrow inhibitory spectrum and limited application.

This work was supported by the project RO1567-IBB05/2020 from the Institute of Biology Bucharest of Romanian Academy and by a grant of the Romanian Ministry of Education and Research, CCCDI -UEFISCDI, project number PN-III-P2-2.1-PED-2019-1675, within PNCDI III.